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Abstract

The relation between the catalyst potential and the catalytic performance has been investigated in the gas-phase
combustion of propylene with oxygen over rhodium catalysts at 375 °C. The rhodium catalyst, deposited on yttria-
stabilized zirconia (YSZ) solid electrolyte, also served as working electrode in the electrochemical cell. Under open-
circuit conditions, the measured catalyst potential was found to be a sensitive indicator of the oxidation state of the
rhodium catalyst, which influences the catalytic reaction rate dramatically and depends strongly both on the method
of catalyst film preparation and on the composition of the reacting gas mixture. In turn, under closed-circuit
conditions, the applied catalyst potential is a convenient tool to maintain the catalyst in its more active, reduced
form and to control its catalytic performance. The activity of atomic oxygen at the three-phase boundary (tpb)
during open-circuit catalytic reaction was estimated from solid electrolyte potentiometric (SEP) measurements, in
good agreement with the average surface oxidation state obtained from XRD and XPS analyses. O/Rh atomic
ratios higher than stoichiometric were found by XPS at the outer surface of the catalysts suggesting a strong open
circuit O~ spillover due to strong metal support interactions (SMSI) and a concomitant extension of the electric
double layer to the gas-exposed catalyst surface, similarly to emersed electrodes in aqueous electrochemistry.
Applying potentials up to several hundreds of mV, highly nonfaradaic promotion of propylene combustion was
achieved. Electrochemical promotion of catalysis (EPOC) was most efficient at stoichiometric gas composition, that
is, close to the limit of surface reduction, and with the catalyst exhibiting the smallest O>~ spillover population at

open-circuit conditions.

1. Introduction

Rhodium is a promising candidate for use as a catalyst
in several gas-phase reactions of strong environmental
impact, such as the combustion of unsaturated hydro-
carbons and the selective reduction of NOx pollutants.
However, despite its high activity and selectivity, a
rhodium catalyst is difficult to employ because the
mechanism may suddenly change depending on the
reacting gas composition [1]. The reason for this is that,
unlike other noble metals of group VIII, rhodium easily
forms surface oxides, and its oxidation state strongly
influences its catalytic activity [2]. In a net oxidizing
environment, the surface of a rhodium catalyst is
composed mainly of Rh,O3;, whereas treatment with
net reducing stream yields predominantly metallic rho-
dium at the surface [2, 3]. Adsorption studies on
rhodium catalyst have shown that oxygen adsorbs very
easily on metallic rhodium, and it can be readily
removed from the surface by a reducing gas [4]. The
change in the oxidation state is fully reversible between
200 and 500 °C, whereas at higher temperature oxidiz-

ing conditions may cause irreversible deactivation of
the catalyst [S]. As a general rule, reduced (metallic)
rhodium exhibits much higher catalytic activity than
rhodium oxide [2].

The oxidation state of the rhodium catalyst is closely
related to its potential. The latter can be suitably
measured in an electrochemical cell where the catalyst
film (working electrode), and also the catalytically inert
counter and reference electrodes usually made of gold,
are deposited on a solid electrolyte. In this work, yttria-
stabilized zirconia (YSZ), an O~ ion conducting mate-
rial at the temperature of catalytic rate measurements
(375 °C), will be used as solid electrolyte support. This
electrochemical cell configuration allows not only the
measurement of the open-circuit catalyst potential with
respect to that of the reference electrode in a solid
electrolyte potentiometric (SEP) experiment [6-8], but
also the application of a potential (or current) to the
catalyst. In this closed-circuit operation, the applied
potential or current is an independent variable used to
tune the activity and/or the selectivity of the catalyst,
which results in a marked, and very often highly
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nonfaradaic, change in the catalytic reaction rate. This
recently discovered phenomenon [9], called electroche-
mical promotion of catalysis (EPOC) or nonfaradaic
electrochemical modification of catalytic activity (NEM-
CA effect) [10—12], has made a strong impact on modern
electrochemistry [13, 14], catalysis [15] and surface
science [16, 17]. EPOC is a general phenomenon in
heterogeneous catalysis, verified for over seventy differ-
ent catalytic reactions over a wide range of metal but
also metal oxide (IrO, [18-20] and RuO, [21-25])
catalysts. Obviously, the catalyst potential plays a key
role in the control of catalytic activity by EPOC.

Rhodium catalysts are commonly prepared by ther-
mal decomposition of suitable precursors, such as
rhodium chloride [26-31], rhodium nitrate [32, 33], or
commercial organo-rhodium pastes [34]. The method
consists of wet impregnation of the support with a
solution of the precursor, followed by drying, firing and
chemical reduction. Another technique frequently used
to deposit thin films is metal sputtering, induced by
bombardment of a target (rhodium) with high-energy
atomic particles (e.g., argon). The key parameters of the
sputtering procedure are the pressure and the ion beam
energy [35]. In the present work, two types of rhodium
catalysts were prepared by thermal decomposition of
rhodium chloride precursor at two different tempera-
tures, and compared with a third catalyst prepared by
rhodium sputtering in argon atmosphere. In addition
to evident morphological differences, the thermally
deposited films are presumably composed of oxidized
rhodium compounds, whereas the sputtered catalyst
coating is expected to contain metallic rhodium in its
bulk.

Using rhodium catalysts, kinetic studies coupled with
catalyst potential measurements under electrochemical
promotion conditions were reported for the combustion
of ethylene [34, 36, 37]. The reaction exhibited electro-
phobic behaviour, meaning increasing reaction rate
when applying positive potential, and the achieved
enhancement was among the highest obtained so far
during EPOC experiments, explained with the strong
dependence of the reaction rate on the oxidation state of
the catalyst. EPOC-assisted reduction of the rhodium
surface was reported also in connection with the
reduction of NO with propylene [38] where the promo-
tion was found irreversible at low temperature (300 °C).
It has been stated that, in analogy with strong metal-
support interactions [39], electrochemical promotion is
due to oxygen back-spillover generated electrochemical-
ly at the three-phase boundary. This causes weakening
of the chemisorptive bond strength of electron acceptor
adsorbates (e.g., oxygen) making easier the reduction of
surface oxides to metallic rhodium [34, 36, 37]. In the
present work, the relation between catalyst potential and
catalytic performance will be studied under both open-
circuit and closed-circuit conditions. The combustion of
propylene with oxygen at 375 °C over differently pre-
pared rhodium catalysts will be taken as a model
reaction.

2. Experimental details

The electrochemical cells were of the single-pellet type
shown in Figure 1. The solid electrolyte supports, YSZ
pellets (ZrO,-FSZ, Dynamic Ceramic Ltd) of 1 mm
thickness, were sandblasted before electrode deposition.
The working electrode (rhodium catalyst) and the gold
counter electrode had a geometrical surface area of
0.5 cm? and were deposited in a symmetrical face-to-
face arrangement onto the opposite sides of the solid
electrolyte pellet, while the small-sized gold reference
electrode was deposited next to the counter electrode at
a minimum distance of 2 mm. This geometry ensured a
symmetrical current and potential distribution in the cell
[40]. The gold counter and reference electrodes were
deposited onto the YSZ support by thermal decompo-
sition of a low-temperature commercial gold paste
(C1991025R2, Gwent Electronic Materials Ltd) at
550 °C. The catalyst films (working electrode) were
deposited by two different techniques: rhodium sputter-
ing, and thermal decomposition of RhCl; precursor.
Rhodium deposition by sputtering onto YSZ was
preceded by a series of subsequent steps of surface
cleaning: immersion in a commercial solution of 5%
Contrad 90 (Decon Laboratories Ltd) in water for 12 h,
treatment in an ultrasonic bath for 5 min, rinsing for
2 min with demineralized water, immersion in 2-propa-
nol, treatment for 5 min in ultrasonic bath, and drying
with a nitrogen stream. In the sputtering chamber,
containing high-purity Ar (99.9999%, Carbagas) at a
pressure of 0.5 Pa, the YSZ support was first cleaned
with argon ion bombardment, then rhodium was
sputtered onto the substrate at 400 °C by cathodic
pulverization of a target (Rh 99.9%, Engelhard). The
process was performed in radio-frequency (RF) mode of
plasma generation with a working power of 100 W on
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Fig. 1. Reactor assembly and furnace used with the single-pellet
configuration. Keys: (1) glass tube; volume 88 ml, (2) electrochemical
cell; (WE) working electrode (catalyst); (CE) gold counter electrode;
(RE) gold reference electrode; (SE) solid electrolyte (YSZ).



the target. Under these conditions the deposition rate
was 0.5 nm s~'. The thickness of the produced rhodium
film, estimated through calibration on simultaneou-
sly processed smooth silicon samples, was 0.2 um.
Throughout this paper this sample will be denoted Sp.

By thermal decomposition, two different rhodium
catalyst films were prepared by the same procedure,
except for the decomposition temperature of the rhod-
ium chloride precursor salt. Previous thermogravimetric
analysis (TGA) showed that during thermal decompo-
sition of the precursor in air anhydrous RhCl; and
Rh,0; were formed above 400 and 700 °C, respectively.
Accordingly, the two different temperatures chosen for
the thermal decomposition were 500 and 800 °C.
Throughout this paper these samples will be denoted
Tdsoo and Tdgyy, respectively. The precursor salt,
RhCl;-2H,O (Alfa, 011032), was dissolved in 1:1
(volume) water:2-propanol (Fluka, 59309) solution with
a metal content of 0.1 M. With a micropipette 3 ul of the
precursor solution were applied onto the YSZ support,
the solvent was evaporated at 100 °C for 5 min, then the
sample was gradually heated up to the chosen decom-
position temperature (either 500 or 800 °C), and kept at
this temperature for 10 min. After the deposition of four
subsequent layers (estimated film thickness 0.2 um) the
sample was heated for 1 h at the temperature of the
decomposition treatment.

X-ray diffraction (XRD) measurements were carried
out with a diffractometer (D500, Siemens) at values of
260 between 5 and 95° using CuKk,, radiation. The angle
was varied with a step size of 0.04° and a step time of
4 s. SEM micrographs were taken with a scanning
electron microscope (JSM-6300F, Jeol). X-ray photo-
electron spectroscopy (XPS) was performed with a
spectrometer (PHI 5500 ESCA, Perkin—Elmer) in the
energy range between 0 and 1100 eV using the K,
radiation of Mg. XRD, SEM and XPS analyses were
performed with the catalysts as prepared and also after
oxidation of the Sp sample with 20% of O, in helium as
well as reduction of the Td samples with 0.5% of
propylene in helium, both treatments made at 375 °C
for 12 h.

The one-chamber reactor for kinetic measurements is
shown in Figure 1. It consisted of a glass tube (V' =
88 ml), closed with a stainless steel cap and operated at
atmospheric pressure. Earlier studies under similar flow
conditions showed a CSTR (continuous stirred tank
reactor) behaviour [42] meaning that the gas composi-
tion in the reactor was uniform and identical to that
measured at the outlet. The electrochemical cell was
suspended inside the reactor with three gold wires (dia.
0.15 mm, Cendres & Métaux SA), serving also as
electric contacts to the electrodes. The temperature in
the reactor was measured with a K-type (NiCr—Ni)
thermocouple placed close to the catalyst surface. The
reactor was placed in a furnace (XVA271, Horst)
equipped with a heat control system (HT30, Horst).
Reactants were Carbagas certified standards of C3;Hg
(99.4%) and O, (99.95%), supplied as 1% (CsHg) or
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20% (O,) mixtures in He (99.996%). The balance was
helium. The gas flow was controlled by mass control
systems (F/201C and E-5514-FA, Bronkhorst). C3Hg,
CO, and CO were monitored with online infrared
(NDIR) analysers (Ultramat SE-2R; Siemens). Analysis
of O, was made with an offline gas chromatograph (GC-
8A, Shimadzu, detector TCD, column Alltech 5S CTR
packed with Chromosorb 107 and molecular sieve 5A).
Closed-circuit experiments were made in galvanostatic
mode with a scanning galvano-potentiostat (Princeton
Applied Research, model 362, EG&G). The catalyst
potential measured in the given system may have a
systematic experimental error for two reasons. On one
hand, in the single-chamber reactor the gold reference
electrode was exposed to varying gas composition hence
its potential might change and, on the other hand, gold
is not a perfect reference electrode material under the
given experimental conditions because the redox couple,
which defines its potential, is not ideally reversible [41].
The resultant error of the catalyst potential was esti-
mated to be less than 20 mV under typical EPOC
conditions, where the applied current does usually not
exceed 100 pA.

Reactive surface titration of the catalysts [10] was
performed at 375 °C in the same reactor, which was
used for the kinetic measurements. First the catalyst
was reduced with 0.5% of propylene in helium for
20 min then the reducing gas mixture present in the
reactor was purged out with pure helium. After the
purge period, the reactor was immediately flowed with
2% of oxygen in helium, and CO, at the outlet was
monitored, which was the only product of the reaction
between oxygen and adsorbed propylene (see later). Due
to the desorption of propylene during the purge with
helium, the CO, production decreased with increasing
purging time, which was varied between 2 and 7 min.
The maximum propylene uptake before purging the
system was obtained by extrapolation of the produced
CO, to zero purging time.

3. Results and discussion

The main morphological, structural and chemical char-
acteristics of the Sp, Tdsoq and Tdgyy rhodium catalyst
films obtained by XRD, SEM and XPS analyses are
summarized in Table 1. XRD showed different mor-
phology and different chemical composition of the
catalyst films depending on the method of preparation.
The Sp catalyst was found crystalline, and its chemical
composition was pure metallic rhodium, consequent to
its deposition in inert atmosphere. The Tdsy, catalyst
was found completely amorphous, hence inactive in
XRD, while the Tdgy catalyst showed a definite
crystalline structure of rhodium oxide (Rh,03). As it
was already foreseen from previous TGA experiments,
higher calcination temperature is favourable to the
formation of rhodium oxide. When oxidizing the Sp
catalyst film with oxygen, or when reducing the Tdsqg
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Table 1. Morphological and chemical structure of the Sp, Tdsgy and Tdgyy rhodium catalyst films deposited on YSZ solid electrolyte support
Oxidation of the Sp sample was made with 20% of O, in helium at 375 °C for 12 h.

Reduction of the Tdsoy and Tdggy samples was performed with 0.5% of propylene in He at 375 °C for 12 h.

Measurements at a depth of 5 nm were made after erasing the surface by argon sputtering.

Analysis Description Sp Tdsgo Tdgoo
XRD Morphology and chemical Crystalline (Rh) as Amorphous Crystalline (Rh,03) as
composition of the bulk of prepared prepared
the catalyst film Remains reduced after Remains oxidized after
oxidation reduction
SEM Structure of the surface Uniform grains Large cracks Scarcely cracked
of the catalyst film Hardly influenced by Disappear after reduction Hardly influenced by
oxidation reduction
XPS Chemical composition of the Metallic as prepared Poorly defined as prepared  Oxidized (Rh,0;) as prepared

outer surface outer surface of the catalyst film

after oxidation

XPS
5 nm depth

Chemical composition of the

catalyst film at 5 nm depth oxidation

Remains partially reduced

Remains reduced after

Becomes metallic after
reduction

Becomes metallic after
reduction

Remains oxidized after
reduction

Remains ill-defined after
reduction

and Tdgy, catalysts with propylene, no significant
alterations on their XRD pattern were observed. The
expected changes in the rhodium oxidation state were
apparently localized at the surface of the catalyst films,
and XRD is not appropriate to monitor surface pro-
perties.

SEM of the samples, as prepared, showed quite
different patterns. The Sp rhodium showed a homoge-
neous film with no cracks or discontinuities, and the film
comprised fairly uniform small grains of less than
100 nm size. The Tdsoo sample exhibited large surface
cracks, which is typical of metal oxide structures [21, 42],
while the Tdgg film showed only a few small cracks.
Apparently, higher preparation temperature results in a
decrease in the size and number of cracks, a phenom-
enon similar to sintering. Oxidizing or reducing treat-
ment resulted in significant surface modification only in
the case of the Tdsy catalyst, causing the majority of the
cracks to disappear.

XPS in the binding energy range of the 3ds, electron
of rhodium showed that the Sp catalyst, as prepared,
was composed of metallic rhodium, and the oxidizing
treatment caused only partial oxidation. In the Tdsg,
and Tdgyy catalysts, as prepared, rhodium in high
oxidation state was found, although in the Tdsq sample
the composition was not well defined and also some
residual chlorine (less than 2%) was detected indicating
incomplete decomposition of the RhCl; precursor dur-
ing calcination at 500 °C. The reducing treatment of
both Td catalysts resulted in a net shift of the electron
binding energy toward that of metallic rhodium and also
a complete elimination of chlorine from the surface of
the Tdsoo sample. Table 2 shows the O/Rh atomic ratios
found by XPS. The relative atomic abundances mea-
sured at a depth of 5 nm (after erasing the surface by
argon ion bombardment) were in reasonably good
agreement with the expected chemical composition of
the samples: Sp being metallic, Tdsy, not fully decom-
posed, Tdgyy mainly an oxide. At the outer surface of the
samples, however, oxygen contents significantly higher

Table 2. XPS analysis of atomic abundances in terms of O/Rh ratio at
Sp, Tdsoy and Tdggy rhodium catalyst films deposited on YSZ solid
electrolyte support*

Analysis Atomic ratio O/Rh

Sp Tdsoo Tdgoo
As prepared 0.82 2.69 2.62
After oxidation 0.50 - -
After reduction - 2.86 2.88
At 5 nm depth 0.08 0.92 1.29

* Oxidation and reduction procedure as in Table 1.

than stoichiometric were found. The effect was parti-
cularly pronounced with the thermally prepared cata-
lysts, and in all cases the reduced surfaces exhibited
higher oxygen content. The excess surface oxygen may
be partly attributed to oxygen adsorption, but it may
also indicate that the catalysts, especially the thermally
prepared samples, were already in a chemically promo-
ted state due to O®~ spillover during preparation. This
phenomenon, caused by strong metal support interac-
tions (SMSI), would result in the extension of the
electric double layer over the gas-exposed catalyst
surface, in analogy with emersed electrodes in liquid
electrochemistry. Accordingly, smaller EPOC effect is
expected with the Td catalysts than with the Sp catalyst.

The catalytic activity of the rhodium catalysts was
studied towards the reaction between propylene and
oxygen at 375 °C. Under any experimental condition,
no CO formation was detected and post-reaction XPS
analysis did not show any significant carbon deposition.
The only reaction occurring was the complete combus-
tion of propylene:

C3H(,+§ 0, - 3CO, +3 H,0 (1)

The comparison of catalysts with respect to their
catalytic activity is best done in terms of turnover



frequency, TOF (s7'), calculated as the ratio of the
measured reaction rate, r (nmol s™') and the maximum
propylene uptake, N (nmol), determined by reactive
surface titration. This latter measurement was per-
formed with the catalysts only in their reduced form.
In fact, the inverse titration of an oxidized catalyst is not
possible, because both structural and adsorbed oxygen
would react with propylene producing carbon dioxide,
and they could not be distinguished.

The first series of catalytic measurements were made
under open-circuit conditions. The reaction rate of CO,
production and the catalyst potential were measured at
varying feed composition with a constant flow rate of
200 ml min~! STP in the atmospheric reactor. The
partial pressure of propylene was varied from zero to
500 Pa, while the oxygen partial pressure was kept
constant (1000 Pa). The results are shown in Figure 2,
where the open-circuit reaction rate and catalyst poten-
tial are plotted as a function of the propylene partial
pressure at the reactor outlet. The open-circuit reaction
rate, r, (nmolO s '), is given in terms of TOF (s7'),
while the catalyst potential, Vg (mV), is the open-
circuit potential difference measured between the rhod-
ium catalyst (working electrode) and the gold reference
electrode.

The left part of Figure 2 shows the open-circuit TOF
at varying gas composition, having a similar sigmoid
shape for the three catalysts. All catalysts exhibited slow
but increasing reaction rates at low propylene content,
and much higher and fairly constant reaction rates at
high propylene content. The transition from the first
regime to the second, which appeared rather progressive
with the Sp catalyst but quite abrupt with the samples
Tdsoy and Tdgg, is dictated mainly by the change in the
oxidation state of the catalysts, rhodium oxide being a
poor catalyst and metallic rhodium being an efficient
catalyst. The change occurred at gas compositions close
to stoichiometric with respect to reaction Equation 1. It
can be concluded that in oxidizing environment (low
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C;3Hg content) the Sp catalyst was much less oxidized
than the two Td samples which appeared almost
identical, whereas in reducing environment (high C;Hg
content) Sp and Tdsq, were similarly reduced while Tdggq
remained more oxidized. It is also seen that the Sp
catalyst, being never completely oxidized, was more
easily reduced, hence entered its high activity regime at
lower C3Hg content, than the Tdsq, catalyst.

In the right part of Figure 2 the open-circuit catalyst
potential, Viyg, is shown as a function of the propylene
partial pressure. It was found that the jump in TOF,
which was attributed to the reduction of the catalyst
surface was accompanied by a drop in the catalyst
potential. From thermodynamic point of view, the
transformation between oxidized and reduced states is
expected to occur at a given open-circuit catalyst
potential, or equivalently, at a given surface activity of
atomic oxygen, ao, at the three-phase boundary (tpb) of
the catalyst (Equation 2):

RT . [ d?
(Ul Y Rl O
WR = 3p H(Po)

where Po, is the partial pressure of oxygen at an ideal
reference electrode. The underlying assumptions are that
the electrodes are pure electron conductors while the
solid electrolyte is a pure ion conductor, and that the
only charge transfer reaction defining the potential is

2)

0 (gas) = 2 O(tpb) + 4 e~ (cat) = 2 O* (YSZ)
3)

In this work a gold electrode was used as reference in a
simplified one-chamber electrochemical cell, where the
reference electrode was exposed to the reacting gas
mixture of varying composition, so its potential was not
constant. Nevertheless, comparison of the three cata-
lysts by their potential measured in the plateau regions

0
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Fig. 2. Open-circuit combustion of propylene with oxygen on Sp (x), Tdsoy (O) and Tdgyy (+) rhodium/YSZ catalysts at 375 °C: turnover
frequency, TOF (left), and catalyst potential, V' (right), as a function of propylene partial pressure at the reactor outlet. Atmospheric

operation; flow rate 200 ml min™"

STP; inlet oxygen partial pressure 1000 Pa.
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may be attempted due to the moderate conversion of the
reactants (C3Hg conversion up to 10, 15 and 20% for the
Tdsgg, Tdggo and Sp catalyst, respectively). It is seen that
the Sp catalyst was the most reduced while the Tdggg
catalyst was the most oxidized of the three samples at
any gas composition, in good agreement with the
instrumental surface analyses and with the observed
catalytic activity.

Use of Equation 2 in order to calculate the activity of
atomic oxygen at the three-phase boundary (tpb) of the
catalyst needs the assumption that there is only one
single charge transfer reaction (Equation 3) and it is in
equilibrium at both electrodes. The gold reference
electrode fairly well satisfied these assumptions, having
a reasonably high exchange current and showing a
steady-state current—potential behaviour independent of
the presence of a hydrocarbon [41]. Assuming that the
same ideal behaviour is valid also for the catalyst
electrode, the oxygen activity at ‘tpb’ at a nominal
oxygen partial pressure of 1 kPa and at 375 °C is
calculated as

) 4F

RT
In(ap) = 7 | Fwr +

FIH(POJ

= 0.072 x [Viyg(mV) — 64] (4)
Figure 3 shows the stability limits of bulk rhodium
oxides, in terms of surface oxygen activity, ln(aé), at the
temperature of measurements (375 °C) [43]. It is seen
that RhO is not stable at this temperature. The Figure
allows comparison of the bulk stability limits with the
experimental In(a?) values calculated with Equation 4
from the open-circuit potentials measured in the imme-
diate proximity of the abrupt potential changes. These
regions are also shown in Figure 2, labelled as ‘Upper
limit’ for the surfaces just oxidized and as ‘Lower limit’

-10

for the surfaces just reduced. The oxygen activity of the
oxidized Sp catalyst fell in the partially oxidized region
between stable Rh and Rh,0O3, and it was shifted deeply
into the Rh region after reduction. The Tdso, catalyst
was more oxidized in its oxidized state, but it also
became completely reduced. The Tdgy, catalyst, al-
though situated just at the limit of Rh,0O; stability when
oxidized, did not exhibit a shift big enough to enter the
metallic Rh region, so it remained partially oxidized
after reduction.

The qualitative agreement between the surface oxida-
tion state estimated from potential measurements and
the observed catalytic activity is satisfactory, taking into
account that ap is a property of the ‘tpb’ while the
reaction rate reflects the average of the whole gas-
exposed surface. In non-equilibrium conditions, signi-
ficant concentration gradients may be present at the
catalyst surface resulting in an underestimation of the
average oxygen activity. Another limitation of the use of
solid electrolyte potentiometry in reacting environment
is the possible contribution of a reaction other than
Equation 3 to the charge transfer at the catalyst
electrode resulting in a mixed potential. This effect is
rather probable in rich hydrocarbon conditions. Such
observations were reported also with a rhodium catalyst
prepared by thermal decomposition of a commercial
organo-rhodium paste employed for the combustion of
ethylene in the temperature range of 300 to 400 °C [34].
In that work, oxygen activity values at the oxidized
rhodium surface were obtained systematically well
below the stability limit of bulk metallic rhodium.
Despite these limitations, and even when measured in a
one-chamber cell where the reference electrode is not
separated from the reacting gas of varying composition,
the open-circuit catalyst potential appeared a sensitive in
situ indicator of the average oxidation state, hence also

Upper limit

In@g/ bar)

Lower limit

!

-200

-300

- 64) / mV
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Td 800

Fig. 3. Activity of atomic oxygen, ao, at the ‘tpb’ of the Sp, Tdsgg and Tdggy rhodium/YSZ catalysts at the ‘Upper limit’ and the ‘Lower limit’ of
the potential change shown in Figure 2, in comparison with the stability limits of bulk rhodium oxides in terms of In(a) at measurement
temperature (375 °C). Right vertical axis shows corresponding corrected (Equation 4) open-circuit potentials. Arrows indicate direction of shift

during surface reduction.



that of the catalytic activity, of rhodium catalysts
deposited on YSZ solid electrolyte support.

In a closed-circuit operation, the catalyst potential is a
convenient tool to tune the activity of the catalyst.
Application of a potential may cause a nonfaradaic
enhancement of the catalytic reaction rate. The electro-
chemical promotion of catalysis (EPOC) is usually
quantified by the rate enhancement factor, p, defined
with Equation 5:

p=-— (5)

To

where r, and r (nmolO s™') are the open-circuit and the
electrochemically promoted reaction rate, respectively,
and by the faradaic enhancement factor, A, defined with
Equation 6:

zF
Af(r—rO)XT

(6)
where I (uA) is the applied current, z is the charge
number of transported ions (for O*, z =2), and F
(= 96.5 uC nmol™") is the faradaic constant.

The EPOC experiments were carried out at 375 °C in
galvanostatic polarization mode with varying applied
anodic current up to 100 pA. For all three catalysts, the
largest promotion was obtained with gas compositions
close to stoichiometric, exemplified in Figure 4. In these
experiments, the inlet partial pressures were 1000 Pa of
O, and 225 Pa of C3Hg¢. At this composition and under
open-circuit conditions all three catalysts were found in
their oxidized form but close to the limit of surface
reduction (labelled as ‘Upper limit’ in Figure 2). The left
part of Figure 4 shows the steady-state rate enhance-
ment factor, p, as a function of the ohmic-drop-free
catalyst potential, Vwgr. The Sp catalyst showed the
strongest promotion (up to p = 2), while the Tdggy,
catalyst was the less sensitive to EPOC (p < 1.2). The
right part of Figure 4 shows the steady-state faradaic
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efficiency, A, as a function of the applied current, /. It is
seen that the effect of EPOC was highly nonfaradaic in
all cases resulting in A values, extrapolated to zero
current [41], of about 900, 250 and 100 for the Sp, Tdsgo
and Tdg catalyst, respectively. The origin of this high
promotion was the anodic polarization of the catalyst/
YSZ interface, which generated O®~ spillover species at
the ‘tpb’. Spreading out of these species over the gas-
exposed, hence catalytically active, surface decreased the
rhodium—oxygen binding energy, thus it assisted also to
the decomposition of surface rhodium oxide at a gas
composition where, under open-circuit conditions, the
rhodium oxide surface sites appeared stable. EPOC was
found the most efficient with the Sp catalyst although it
remained partially reduced even after oxidation (Ta-
ble 1). This is in good qualitative agreement with the
results of XPS analysis (Table 2), which indicated that
the Td catalysts, and especially that prepared at 800 °C,
were in a chemically promoted state already under open-
circuit conditions due to oxygen spillover during pre-
paration, which made them less sensitive to EPOC in
comparison with the Sp catalyst.

4. Conclusions

Rhodium catalysts were deposited on YSZ solid elec-
trolyte support by two techniques: rhodium plasma
sputtering (Sp), and thermal decomposition of RhCl;
precursor at 500 °C (Tdsq) and at 800 °C (Tdggg). XPS
and XRD measurements evidenced that, as prepared,
the Sp catalyst film was crystalline metallic rhodium, the
Tdso catalyst was amorphous and only partially de-
composed, and the Tdgg catalyst was mainly composed
of crystalline Rh,0O5. Oxidizing or reducing treatment at
375 °C was shown to modify only the outer surface of
the catalysts. The Sp catalyst remained partially reduced
after oxidation, the Tdgy, catalyst remained partially
oxidized after reduction, and the Tdsg, catalyst exhibited
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Fig. 4. Electrochemical promotion of the Sp (x), Tdsgo (0) and Tdgg, (+) rhodium/YSZ catalysts in the combustion reaction of propylene. Left:
steady-state rate enhancement factor, p, as a function of the ohmic-drop-free catalyst potential, Vwr. Right: steady-state faradaic efficiency, A, as
a function of the applied current, /. Feed composition: O, (1000 Pa) and C;H¢ (225 Pa); T = 375 °C.
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an intermediate behaviour. O/Rh atomic ratios higher
than stoichiometric were found by XPS at the outer
surface of the catalysts suggesting O~ spillover due to
strong metal support interactions. The effect was par-
ticularly pronounced with the Td catalysts. The rhodium
films served both as working electrode in the electro-
chemical cell and as catalyst for the reaction of
propylene combustion at 375 °C. Under open-circuit
conditions, the catalytic reaction rate appeared to
depend strongly on the oxidation state of the catalyst,
a reduced catalyst being much more active than an
oxidized catalyst. The change in the catalyst oxidation
state due to varying composition of the reacting gas
mixture was accompanied by a shift of several hundred
millivolts in the open-circuit catalyst potential. Follow-
ing the principle of solid electrolyte potentiometry, the
activity of oxygen at the ‘tpb’ during the open-circuit
catalytic reaction was estimated close to the limits of the
change in surface oxidation state. Oxygen activities were
found in good agreement with the average surface
oxidation state suggested by XRD and XPS analyses.
While the open-circuit catalyst potential appeared a
suitable indicator of the oxidation state of the catalyst
surface, under closed-circuit conditions the potential of
the catalyst was a convenient tool to tune in situ the
catalytic activity. At stochiometric gas composition,
where in open-circuit conditions the rhodium catalysts
were just oxidized but close to the limit of surface
reduction, electrochemical promotion was highly non-
faradaic, indicating that the catalyst surface became
partially reduced under positive potential application.
This was due to electrogenerated O>~ spillover toward
the gas-exposed catalyst surface, which is known to
weaken the rhodium—oxygen bonding strength. Cata-
lysts exhibiting higher O~ spillover during preparation,
thus being promoted to some extent already in open-
circuit conditions, are expected to be less efficient
in electrochemical promotion. Accordingly, the efficien-
cy of EPOC decreased in the order Sp > Tdsy, >
Tdsgo.
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